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Abstract 

Following recent developments in the hypothesis of a discrete space-time lattice, some 
assumptions are postulated that seem necessary to work out this model in the theory 
of special relativity. In particular, the assumption of space-time coordinates with integer 
values requires the translation of relativistic mechanics and electrodynamics into the 
language of finite difference equations. A special study of the covariance of these equations 
under the inhomogeneous Lorentz group is carried out. Finally, a stronger assumption is 
postulated, by which the physical magnitudes derived from the space-time coordinates 
should take rational values. 

1. Introduction 

From time to time the idea of  a discrete space-time has attracted the 
attention of physicists. Recently Greenspan (1973) in several papers and a book 
has worked out methods of numerical calculations suitable for computer 
programs, based on the idea of  a discrete mechanics. At the end of  his book 
he challenges other scientists to carry out an extensive program about discrete 
models, among them a complete study of  a discrete special relativity. 

The idea of  physical measurements led Taylor and Wheeler (1966) to 
assume a discrete cubic lattice where all the physical events take place, with 
space-time coordinates given by integral numbers. 

In order to describe the quark confinement for strong coupling, K. G. 
Wilson (1974a) 3 introduced a discrete space-time lattice, which gives a finite 
energy proportional to the separation of  quarks. Nevertheless, he recognized 
that his theory is far from covariant owing to the lattice. 

1 This work is supported in part through funds provided by the Atomic Energy 
Commission under Contract No. AT11-1-3069. 

2 Sponsored by G.I.F.T. Permanent address: Departamento de Fisica Te6rica, Facultad 
de Ciencias, Universidad de Madrid, Madrid-3. 

3 I am thankful to Professor R. Jackiw for bringing to my attention Wilson's ideas. 
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In a recent paper, we have also tried to describe a physical world, the 
structure of which is supported by a (3 + 1)-dimensional cubic lattice (Lorente, 
1974). More references can be found in this paper about other people who have 
approached this classic problem. 

The way of starting this theory, which seems to be arduous from the 
beginning, has not been unanimous at all. The weakest assumption states 
discreteness in the eigenvalues of the space and time operators, following the 
principles of quantum mechanics. What looks more radical is a stronger assump- 
tion that proposes discrete space-time variables though the functions representing 
physical quantities can be represented by continuous functions. The strongest 
assumption tries to extend the discreteness to all the physical magnitudes, not 
only space-time, even at the risk of  running into a dead end. 

in this paper we work out the possibility of a discrete special relativity, 
using the assumption of a discrete space-time, which requires that the most 
fundamental formulas of relativistic mechanics and electrodynamics be 
translated into the discrete language. Special care witJ be taken with respect to 
the problem of covariance. It turns out that the equations of mechanics are 
easily written in a covariant form. The situation in classical electrodynamics 
looks more difficult in principle. At least in one particular case, covariance is 
obtained as a result of  auxiliary conditions. 

To many people the idea of a discrete space-time seems unfounded. It 
can be true, but the bases for a continuous space-time also lacks any serious 
foundations. It is not unreasonable to try, as a hypothesis, all the possible 
approaches. They may be contradicted by experimental results, or they may 
lead to some superselection rules useful to describe unexplained phenomena. 

2. General Assumptions 

In order to describe the fundamental laws of physics in a discrete form it 
is important to know from the beginning which particular postulates of the 
special theory of relativity are retained and which of them are modified, tn 
general, we can say that only those principles that can be applied to discrete 
properties of  matter should be kept. Therefore, the two fundamental assump- 
tions of special relativity remain the same: 

(1) All physical phenomena will take the same form in any system of 
inertia, in other words, all systems of inertia are equivalent. 

(2) The propagation of velocity of fight in empty space must have the same 
constant value in every system of inertia. 

The second assumption follows from the first one when we apply it to the 
Maxwell equations; however, since we are going to modify these equations 
we prefer to make a different assumption. 

The new assumption we introduce is connected with the discrete properties 
of matter. As far as our observations are concerned we can only measure finite 
values of  physical quantities such as lengths, time intervals, masses, charges, 
and so on. Therefore we do not lose any kind of generality if we describe the 
physical taws with discrete magnitudes. Since the fundamental laws of physics 
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have been proved to be very successful in their differential form it is straight- 
forward to combine the aforementioned properties in the following assumption: 

(3) The expression for the physical laws in special relativity should retain 
the same relations if the values of the magnitudes involved are finite, but the 
local properties of these magnitudes, when they appear, should be described by 
discrete quantities. 

This assumption requires the use of numerical calculus, which is better suited 
to computer program than the functional analysis (Greenspan, 1973). Moreover, 
if the finite increments of the magnitudes can only take integer values, then the 
description of physical laws should be made in terms of difference equations, 
instead of the classical form of the differential equations. 

3. Relativistic Kinematics 

3.1. Coordinates o f  an Event. A very good way to visualize the finite 
measurements of some physical quantity is the cubical latticework of meter 
sticks, described by Taylor and Wheeler (1966), representing one inertial fi'ame. 
At every intersection of the lattice there is a clock, and all the clocks are 
synchronized with one another. Although in the Taylor-Wheeler picture two 
neighboring intersections are separated by one meter in distance and one meter 
of light in time, one can choose smaller units to have a more precise picture. 

In order to determine the location and instant of some event, we can take 
the position and time of the dock nearest to the event. If we have chosen in 
advance some origin of spacial coordinates to distinguish each individual clock 
and some instant as the initial time for all the synchronized clocks, we can 
take as coordinates of the event the spacial position and time of the nearest 
clock with respect to the chosen origin, The coordinates of the event will 
be represented by the usual four-vector 

x ~ (Xl,X2, X3, X4) , x 4 = ct (3.1) 

where c is the velocity of light in empty space. 
The same event can be described by another inertial frame, which is 

visualized by a different latticework of meter sticks and synchronized clocks. 
The coordinates of the event with respect to this new reference system will be 

1 _ _  t ! ! t r 

X : (X 1 , X 4 c t  r x2, x3, x4), = (3.2) 

It can be argued that this way of location for one event is not precise, even 
if the distance between clocks becomes very small. Although this is true from the 
point of view of a continuous model of space and time, the quantum theory of 
measurement forbids us to get a better accuracy beyond certain limits. Never- 
theless this naive description of inertial systems will be considered completely 
exact from the conception of a discrete space-time. 

3.2. Transformation o f  Coordinates. The next step in the construction of a 
discrete relativistic kinematics is to find out the transformations of coordinates 
of some event, which are consistent with the assumptions stated before. It is 
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very well known that the most general transformations that satisfy assumptions 
(1) and (2) are given by the elements of the proper Lorentz group. (In classical 
physics we are not concerned with parity and time reversal transformations.) 
But it can be checked that in the derivation of Lorentz formula no use has been 
made of infinitesimal values of the coordinates or local properties of the group. 
Therefore, they are consistent with assumption (2). 

The fundamental representation of the Lorentz group can be made with the 
help of Euler angles as the parameters of the group. We want to reproduce here 
another representation using Cayley parameters as explained in Lorente (1974). 
For special Lorentz transformations of  the coordinates in the system S' with 
respect to the coordinates of the same event in other system S we have 

[xll [m2+,.~_s2 _t2 2~s >t -2,,~ 1[x~1 

lx~|=-I  2rt 2st m 2-r2-s2 +t 2 -2mr | |  |x3 
LxaJ ~L -2m~ -2,,, - 2mr  ,,2+r2+s~+t~] kx~] 

(3.3) 

where A = m s - r 2 - s 2 - t 2 must be positive in order that the transformation 
belong to the proper Lorentz group. The relations between the Cayley para- 
meters (m, r, s, t) and the relative velocity v of the two inertial systems S and 
S' are given by 

2cmr  2cms 2 c m t  
2' V2 = ~2' V3 = v~ =mS +r 2 +s 2 +t m 2 +r 2 +s 2 +t  m2  +r2 +s2 + t 2(3"4) 

From this it follows that v 2 ~< c2; the equafity holding only when r2+ s2+ t z= m s, 
For a rotation of the system S with respect to the system S'  the coordinates 

of the same event will transform as follows: 

2ran + 2pq m 2 n 2 +pz -2mq + 2np (3.5) 
lUg, l =  S - _ [_x3j -2rap +2nq 2mq + 2rip rn2+n 2 _ p 2  _ q2 

where A = m s + n z + p2 + q2. The relation between the Cayley parameters 
(m, n, p, q) and the axis a and angle of rotation sin ~ = a ='1 a J is given by 

2mq  2 m p  2mn  
- -  , a 2 = , - al m 2+n 2+p2+q2 m 2+n 2+p2+q2 a3 m 2+n 2+p2+q2 

(3.6) 

The geometrical interpretation of the Cayley parameters in the pure Lorentz 
transformations and three-dimensional rotations coincides with the interpreta- 
tion of the classical Euler parameters only when the last ones correspond to 
infinitesimal transformations (see, for instance, Fock, 1964). For this reason the 
Cayley parameters are suitable to describe finite transformations as well as 
very small ones, provided that, in the latter case, the parameters n, p, q or 
r, s, t are very small in comparison with m. 
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Finally for a general t ransformat ion  o f  the  proper  Lorentz  group we have 

~x ' l  1 [ m 2 - n 2 . - - P 2  +q 2 + r 2 - s 2  t 2__X  2 

' _ 1 1 2 r n n  + 2pq + 2rs 2Xt [;~] 2 X l - 2 m p + 2 n q + e r t + 2 X s  

k - 2mr 2ns + 2pt  - 2Xq 

2rap + 2nq + 2rt - 2ks 

2mq + 2np + 2st + 2?,r 
rn 2+n2 p 2 _ r  2 s 2+t 2+x2 

2mr - 2pr + 2qs - 2Xn 

where 

--2ran + 2pq + 2rs + 2>,f 
m 2 _ , @ + p Z _ q a _ r  2+s2_t2 +X2 

2mq + ~Tp + 2st 2Xr 

-- 2ms + 2nr - 2qt  2 ~  

r2zs t2q  [xl 1 2ms - 2nr + 2qt - 2 ~  ! x2 

2rot + 2pr - 2qs -.- 2Xtl [ x3 
m 2 +n2 +p2 +q2 +r 2 +s 2 +t 2 +~,~ .] x4 

(3.7) 

rn3, = n t  + ps  + qr  

and 
A = m 2 + n 2 + p2 + q~ _ r 2 _ s z _ t 2 _ 3,2 

The general  t ransformat ion  ( 3 . 7 )  wi l l  be  summarized  from n o w  on  b y  the  
standard no ta t ion  4, 

x~ = & , %  (u, u = 1,2,  3, 4) (3.8) 

We have to consider  also the trans format ion  o f  coordinates  w i t h  respect  to  
translat ions,  that  is to  say,  

X l  = X 1 + a 1 

r 
x 2 = X 2 + a 2 

t 

x 3 = x 3 + a 3 
t 

x 4 = x 4 + a 4 

which in standard no t a t i on  reads 

x ;  = x u + a .  (3.9) 

ha order  that  the discreteness o f  space-t ime be conserved the general  
e lement  o f  the proper  Lorentz  group (3.7) must  have integer componen t s ,  
which is met  if  

A _ ~  m 2 + n 2 + p 2  + q 2  _ r 2 _ s z _ t ~ _ 32 = 1 (3.10)  

Obviously these e lements  fo rm a subgroup. [The only  nontr ivial  p roper ty  to  be 
proved is that  every e lement  has an inverse that  belongs to the same subgroup,  
but  the inverse e lement  is represented  by  the  parameters  (m, - n ,  - p ,  - q ,  - r ,  
- s ,  - t ) ,  which satisfies (3.10),  when the original e lement  does.] 

4 I use the metficgll  = g22 =g33 = -g44 = 1. 
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For the translation group, the discreteness condition is easily met, if the 

parameters take only integral values: 

@ = integer (3.10a) 

If we combine the Lorentz group and the translations, as a semidireet group, 
the elements that satisfy the discreteness condition form a subgroup. As before, 
the only nontrivlal property to be proved is the existence of the inverse element. 
But given a general element of the Poincar6 group (au, AuV), the parameters of 
which satisfy (3.10) and (3.10a), the corresponding inverse element 
( - A f @ ,  Av u) belongs also to the same subgroup. 

3.3. The Interval o f  Two Events. Consider two different events (1 } and 
(2 }, whose coordinates with respect to two inertial frames S and S' are 
labeled by 

{x~tl}, {X.2} and {x;1}, {x; 2} (3.11) 

Suppose that both systems S and S' are related by some inhomogeneous 
Lorentz transformations. According to (3.8) and (3.9) we must have 

x; (K) = A~x(~ ) (t~ = 1,2) (3.12) 

x;  (~) =xp  ) +a ,  (K = 1,2) (3.13) 

We construct the finite differences between the components of the two 
events, 

A x u --xu 1 - x ,  2 (3.14) 

Under a homogeneous Lorentz transformation this four-vector becomes from 
(3.12) 

Ax'~ = A ~ A x v  (3.15) 

and under a translation given by (3.13) 

2x 4 = 2ix. (3.16) 

From (3.15) and (3.16) it follows that the norm of the four-vector {Axu} is 
invariant under an inhomogeneous Lorentz transformations (3.8) and (3.9) 

( a x ; ) 2  + ( a x ; ) ~  + ( a x ; ) 2  _ (axe)2  = ( a x l ) 2  + (ax~)~ + (ax3)2  _ (ax4)2  

(3.17) 

This invariant is called the interval between the two events. According to the 
standard classification, the vector (Ax,} will be spacelike, timelike, or light- 
like when the interval is positive, negative, or zero. In particular the timelike 
interval 

a t =  ( 1 / c ) [ ( a x 4 )  ~ - ( a x t )  2 - ( a x e )  2 - (ax3)211/2 (3.18) 

is called the proper time between the two events. 
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3.4. Transformation o f  Velocities. According to the assumption (3), the 
velocity of  a particle should be described by discrete quantities. Given a 
particle that is mox~ng with respect to some reference system, tM position 
and time in two consecutive events of  the same particle are represented by the 
four-vectors (x~ 1} and (x~2}. It is natural to define the three-vector velocity 
as the quotient of  the spacial and time displacement (Lorente, t974,  p. 241): 

Ax 1 Ax 2 AX 3 
ul = A t '  us = ~ - '  u3 = At (3.19) 

where 2xxl, Ax2, Axa, At are discrete quantities. Other authors prefer to define 
the three-velocity in different ways for different reasons, s We prefer (3.19) 
because, as we will prove, it is more consistent with covariant considerations. 

The transformations of  the three components of  the velocity under a 
Lorentz transformation are obtained immediately from (3.15): 

, Ax;c AI~Axv _ Akmcum + A 4 c  2 
Uk = ~ = eA4AV xv Ad'nUm + A44c (k, m = 1,2,  3) (3.20) 

which can be easily put in vectorial form using the three components 
(v 1, v2, v3) of  the relative velocity in the case of  a pure Lorentz transformation 
(see M~ller, 1952). 

Obviously the transformations of  the three-velocity (3.19) under trans- 
lations (3.9) are given from (3.16): 

t t t 

ul = us, u2 = u2, ua = u3 (3.21) 

Let us consider the motion of  a particle in the (3 + 1)-dimensional Minkowski 
space. The line described by this motion will be called the world-fine of  the 
particle. We can use the length of  this line as the parameter for the representation 
of this motion, since it is an invariant under the inhomogeneous Lorentz group 

AS = (AxuAx~)U2 = cAr  (3.22) 

where 7- is the proper time of  the particle. 
ff we define the four-velocity as 

U, = axu /Ar  

from (3.22) we obtain 

UuU~ = c 2 

and taking the finite difference o f  the last equation, we get 

(AU. )U  ~ + U.zXU ~ + A U . ~ U  ~ = 0 

(3.23) 

(3.24) 

(3.2s) 

Greenspan (1973) has discussed different definitions of the three-velocity. Although 
he uses our definition (3.19) in the demonstration of the relativistic mass formula, he 
prefers a different one for the nonretativistic case 
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The last term AUuAUU is an invariant. In order to know its value, we take an 
inertial frame where the three-vector A U  K = 0. Since 

Uk-  Llk 
( 1  - u2/c2)ln 

in this particular inertial frame the velocity u remains constant in the two 
consecutive events. Therefore 

C 

u 4 -  ( 1  - -  U2/C2) 112 

also does not change in the two consecutive events. Therefore AU 4 = 0 and 
AUtzAUU = 0. Then dividing (3.25) by AT we obtain 

u . A u . / ~ r  = 0 (3.26) 

a result which was proved in the classical definition of  velocity. The four-vector 

A u = AUU/Ar (3.27) 

is called the four-acceleration. 
Another expression which can be written without modification, is the wave 

number four-vector of  a plane monochromatic wave: 

K u = 2~ ~-, (3.28) 

where X is the wavelength o f  the wave, Ti ts  period, and fi a unit vector in the 
direction of the wave normal. It is well known that the phase of the wave is an 
invariant under Lorentz transformations 

X'ux'U = Kux u (3.29) 

and therefore the wave number four-vector transforms as 

K'~ = A j K ,  (3.30) 

There is an obvious consequence of  the kinematical properties of  this 
model. The motion of  a particle, if it is not  continuous, should be described 
by discrete jumps on the points of  a (3 + 1)-dimensional cubic lattice. Between 
consecutive events the proper time given by (3.18) will not take, in general, 
the same values. Therefore it is not  a convenient parameter as in the continuous 
case. The most useful way to describe a discrete motion seems to be with the 
help of  a parameter labeling the sequence o f  events. Thus the covariant 
expression for the motion of  a particle will be 

x.  = x.(u) 

where xu(u ) are entire functions of  the variable u, which can take only integer 
values, and is invariant under inhomogeneous Lorentz transformations. This 
kinematical variable was suggested from different considerations by Aghassi 
et at. (1970)as mentioned in Lorente (1974). 
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4. Relativistic Mechanics 

4.1. Momen tum andEnergy o f  a Particle. In order to derive the expression 
of the relativistic three-momentum of a particle of  mass me the classical 
arguments are based on the assumptions of special relativity [assumptions (1) 
and (2)] and the more general one of the conservation of momentum. If we 
impose in this derivation an extra condition of discreteness [assumption (3)] 
we can retain the same expression for the momentum, provided that in its 
calculation no infinitesimal properties for the motion of the particle are used. 
It is easily checked that starting with the definition of the three-velocity 
u = Ax /A t ,  the same classical arguments together with the assumption of 
discreteness will lead to the definition of three-momentum 

mo u &x 
P = (1 - uZ/c2) 112- m°~r (4.1) 

Now we want a fourth component of the momentum in order to have a four- 
momentum, in such a way that it transforms covariantly under the inhomo- 
geneous Lorentz group. 

Following an elegant argument by Taylor and Wheeler (1966, pp. 111-I 14), 
we rewrite the transformations (3.15), multiply both sides by m o, and divide by 
Ar (recall that Ar = 2xr'): 

A 4 _  v 2xx~ (4.2) 
m o  ~ - A~, mo ~ r  

Tile objects so constructed, moAxu/Ar ,  transform as the components of a 
four-vector. But the first three components of it are exactly the components 
of the three-momentum (4.1). Therefore we can define the four-momentum as 

Pu =mo A x J A r  (4.3) 

The fourth component of this vector is 

AX4 _ moc (4.4) 
P 4  = me zXr (1 - -  U2/C2) 1/2 

which, multiplied by c, is the relativistic energy of the particle, in discrete form. 
There are several reasons to call p4 c = E the relativistic energy. First of all, in 
the nonrelativistic limit, u ~ c, 

E ~ me c2 + ~mo v2 (4.5) 

E goes to the sum of the rest energy and its kinetic energy. 6 
Secondly E satisfies the same conservation laws as the classical energy. The 

argument is based only on the conservation of three-momentum and is 
consistent with the assumption of discreteness, v In fact, from (4.2) we have 

K = A~Pv (4.6) 
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Suppose we have an elastic collision of  two particles, with total four-momentum 
Pu and qu, before and after the collision, respectively. Under a Lorentz trans- 
formation, q~ behaves as a four-vector: 

I qu : Ayqu (4.7) 

Obviously, the difference of  both four-momenta Apu = Pu - qu is transformed 
as 

Ap~ = auVApv (4.8) 

The first three equations of  (4.8) read 

Ap'lc = A f f A p ]  + A 4 A p 4  (]', k = 1,2,  3) (4.9) 

from the assumption of  conservation of  momentum, valid in every inertial 
system, Pk = qk, and p;~ = q;~, hence APk = Ap~ = 0, which from (4.9) gives 
Ap4 = 0. Taking this result in the fourth equation of  (4.8) we get 

A P4' = A4kA Pk + A 4 A p 4  = 0 (4.10) 
t t 

Therefore P4 = q4 and P4 = q4, which means that the fourth component of  the 
momentum is conserved in every inertial system. 

4.2. The Norm of the Four-Momentum. From (4.1) and (4.4) we easily 
obtain 

p _ l  Ax  
E c 2 At (4.11) 

We want now a relation between the finite increments of  the three-momentum 
and energy of  a particle. We take the finite difference o f  the Lorentz invariant 

pZ _ E 2 / c 2  = _mo2c 2 (4.12) 

which follows from (4.3), and remembering the rule for the finite difference 
of  the product of  two functions, we have 

2pAp + (Ap) 2 - ( 1 / c 2 ) [ 2 E z ~  + (AE)  2] = 0 (4.13) 

The difference of  momentum in two consecutive events of  the particle, 
Apu, is also a four-vector, therefore its norm ApuApU is a Lorentz invariant. 
In order to calculate this invariant we take an inertial system such that 
Ap = 0, which means that the three-momentum of the particle is the same for 
the two consecutive events, and consequently the velocity and energy are 
also the same. Therefore, in this particular frame Ap = AE = 0, and so in an 
arbitrary inertial frame 

(Ap) 2 -- (1/c2)(AE) 2 = 0 

6 Greenspan has proved (1973, p. 136) that using the discrete expression for the 
relativistic energy one can prove the relation E = me 2. 

7 This argument follows Taylor and Wheeter's book (1966). 
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Inserting this result in (4.13) and using (4.t 1), we obtain 

A E = u  "Ap 

9 3 7  

(4.14) 

4.3. Force and Equation o f  Motion. The definition of force is made up in 
special relativity with the help of the relativistic three-momentum. We should 
keep an equivalent definition in case we want to introduce assumption (3), 
but then we have to take the definition of four-momentum in the discrete 
sense, given by (4.t)  and (4.4). Therefore, the three-component force is 
defined as 

F = A p / A t  (4.15) 

This equation is not only the definition of the force but the equation of 
motion in a discrete relativistic mechanics. 

Multiplying both tides of (4.15) by u and using (4.14), we obtain 

F . u = ~ / A t  (4.16) 

which expresses in discrete form the equivalence between the work done by 
the force and the change of the total energy per unit time. This is also another 
reason to call energy the fourth component of the formally constructed four- 
vector Pu, as defined in (4.3). 

Equations (4.t 5) and (4.16) are still not in covariant form. in order to do it, 
we divide both sides by (1 - u2/c2) I/2. The foul- equations 

Ap E AE F • u 
- ( 4 . 1 7 )  

Ar (1 - -  U2/C2) 1/2' AT ( 1  - -  lz2/e2) 1]2 

are now covariant, since the numerators in the left side transform as a four- 
vector and the denominator is a Lorentz invariant. Therefore, the right side 
must be also the components of a four-vector. This four-force, or Minkowski 
force, is defined as 

At '  cAT ] (4.18) 

and (4.17) can be rewritten in the form 

Apu/Ar  = F u (4.19) 

or in terms of the four-velocity (3.23) 

mo )X-~- = Fu (4.20) 

Contracting both sides with U u, and using (3.26), we obtain 

F~U ~z = 0 (4.2t) 

a result equivalent to the continuous case, in the case where the proper mass is 
conserved. 
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In the case of  a collision of a system of particles with another system, in 
which a certain amount  of  energy and momentum is transferred from the first 
system to the second one, classical arguments will lead to the same equivalent 
relation between the mass and energy 

Am = AEIc 2 

With the help of  (4.6) we can construct an angular momentum in four- 
dimensional representation 

Muv = xupv - xvpu 

which satisfies with the help of  (4.19) 

A M . d A r  = (x .  + Ax~,)D - (xv + A x v ) f .  

which is clearly covariant. 

5. Classical Electrodynamics in Empty Space 

5.1. Maxwell Equations in Discrete Form. It is well known that Maxwell 
equations are consistent with the principles of  special relativity. If  we want to 
introduce the discrete representation o f  this equations, assumption (3) tells us 
that we have to change the differential expressions into difference equations. 
At this moment ,  one observation is very important.  The finite increment of  
the independent variable should take an arbitrary integral value, not just the 
value unity, as is customarily said in the calculus of  difference equations. We 
have followed this procedure in the previous sections, in all the formulas of  
discrete relativistic mechanics. The reason for it is that,  under a Lorentz trans- 
formation, not only the variables but also their increments take different 
vahles in different inertial frames, and we cannot keep the unit value for the 
finite increments in any inertial frame. Therefore, the following substitutions 
should be made: 

In one variable func t ion , / (x )  

a~ __, 2_/_/(x + Ax) -/(x) (5.~) 
dx Ax Ax 

In more than one variable function, f (x ,  y),  for instance 

O X .+ax,f_flx + Ax, y)-f(x,y) (5.2) 
0x Ax 

Defining the discrete operators 

div A = 

Ax 

AxAx + AyAy  + AzAz (5.3) 
Ax Ay Az 

(AyAz AzAy a~Ax AxAz AxAy AyAxt 
rot A ~ , , (5.4) 

\ a y  ~ ~ ~ Ax ay ] 
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we can write Maxwell equations in discrete form 

! AtH 
div H = 0, rot E + - 0 (5.5) 

c At  

1 A t E  p u  
div E = p, rot H - (5.6) 

c At  c 

where p is the charge density and u = A x / A t  the velocity with which the 
charges move. From (5.6) it is easy to derive the continuity equation in 
discrete form: 

Atp 
- -  + div (pu) = 0 (5.7) 
At  

5.2. The Electromagnetic Field Tensor and the Four-Current Density. If we 
want to write (5.5) and (5.6) in covariant form, let us introduce the electro- 
magnetic field tensor Fur , and the four-current density s u 

Fur = -Fun, ekmn Fmn = Hk, F4t c = E k (5.8) 

sx = (1 /e )puk,  s4 = p (5 .9)  

then, (5.5) and (5.6) can be writ ten 

AuFvP + AvF°u + A°Fuv = 0 (5.10) 
Ax~ Ax. Ax o 

AvFuv - s (5.11) 
Axv u 

where A~ is an abbreviation for Axu, but no summation over p is understood.  
The cont inui ty  equation (5.7) reads 

A~s. 
Ax. 

where summation over p is understood.  

= o (5 .12 )  

5.3. The Tbur-Potential. The discrete form of  the Maxwell equations is 
also consistent with the introduct ion of  the four-potential .  In fact, H and E 
can be written, as a consequence o f  (5.5), as follows: 

1 AtA 
H = rot A,  E = - g r a d  q~ (5.13) 

e At 

where A and ¢ can be chosen in such a way that  they satisfy the Lorentz 
condition in discrete form 

1 Atq~ - 
div A + - - -  - 0 

c At 
(5.14) 
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If we write the four-potential in covariant form 

A** = (A, ~b) 

(5.13) and (5.14) can be written 

Fur _ AuA v A~A~ 
Ax,, Ax ;  

AuAu = 0 
Lxx u 

(5.15) 

(5.16) 

(5.17) 

and these expressions are invariant under a gauge transformation 

-> A;  = A• +A2x~ u (5.18) Au 

Inserting (5.18) in (5.17), we have the condition 

A~,,~ _ 0 (5.19) 
2xx~Lxx u 

and finally, with the help of  (5.16) and (5.17), (5.11) we can write Maxwell 
equation in the form 

AuuAv _ 
-su (5.20) 

A xu AxU 

5.4. The Electromagnetic" Energy-Momentum Tensor. With the help of  the 
electromagnetic field tensor it is possible to express covariantly the effect of a 
given field Fur on a moving particle of  charge e. By classical arguments, consisten 

with the assumption of  discreteness, one obtains 

Fu = (e/c)guvu v (5.21) 

For a distribution of  charged matter with a four-density s u = p°Uu/e, one 
gets a four-force density 

fu =Fur sv (5.22) 

With the help of the electromagnetic field tensor Fur, we can construct, as in 
the continuous case, the Lorentz invariants 

v ~uv - H 2 _ E 2 (5.23) 

and 

%vorFlaVF ~r = H" E 

as wetl as the second-rank symmetric tensor, the electromagnetic energy- 
momentum tensor, 

Sl.zv Z F~toFv p 1 .  ~, ~ ,ar  (5.24) - -  ~ 5 # v a  ar* 
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Nevertheless, in the discrete case, the partial differences with respect to the 
four coordinates, contracted with the second index, do not give the four-force 
density. Instead we have 

A~V-FupsP +AvF~o(FvP +AvFvP) - 1  Av/~ (F°': +AvF °r) (5.25) 
. zax~ 2gu~ Ax~ 

5.5. Monochromatic Plane Waves. We now try to solve the Maxwell equations 
in discrete form in the case of electromagnetic field in empty space. If we 
choose the four potential A u such that ¢ = 0, then we have 

1 At A 
H = r o t A ,  E -  ~ (5.26) 

c At 

where rot A is a difference operator (5.4), the Lorentz condition (5.14) reads 

dip a = 0 (5.27) 

and the wave equation (5.20) is given by 

AyyA AzzA i AttA AxxA + + - 0 (5.28) 

We try a particular solution in the form of a plane wave (which is equivalent 
to use separation of variables) 

A = Aoe i(K" x -  cot) (5.29) 

here Ao is a constant complex vector, co is the angular frequency and K is the 
wave vector. Inserting (5.29) in (5.28) we see that A is a solution of the wave 
equation if the following condition is satisfied: 

\[eiKxZaX--ll2+geiKy~y----'\2~x ] \ Ay ")+[-[eigz~X2--~ ! _ ) 2  \--~[ ](eiWAt--ll2 = 0  (5.30) 

Given some discrete increments Ax, &y, Az, At, the wave vector (K, co) will 
depend on them. 

But we still have an extra condition, if we want (5.28) to be covariant under 
Lorentz transformations. Obviously (5.29) is a covariant expression because 
the phase (K" x - cot) is a Lorentz invariant. Therefore, we must require that 
(5.30) have the same form in an arbitrary inertial frame. The problem is 
solved if we make 

KxAx = KyA y : Kza z = coat =1~/ (5.3t) 

where Mis an arbitrary constant. In fact, suppose that in some inertial frame 
(5.31) is satisfied or, in covariant form 

K, = M/Ax, (5.32) 
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We go to another inertial frame. We have from (3.30) and (5.31) 

1 1 
! m / 2  

Ku-AuKz"  AX'~ a~2xxv 

Combining the last expression with (5.32) we get 

(5.33) 

or  

M M t 

t t t t t 
KxdXX = KyAx  = Kz&z = co'At' = M 

Therefore the numerators in (5.30) do not change; substituting (5.32) in 
the denominator we obtain 

KuKU = K z _ co2 = 0 (5.34) 

which is an invariant expression. 
The condition (5.32) is a very strong one, because it fixes the direction of  

the wave vector K u in the direction of  the [2xxu] -1, which are given by  the 
difference equation. This situation does not happen in the differential wave 
equations, because the increments Ax u always go to zero. 

The covariance of  (5.30) is also trivially satisfied if 

M = 2~rm (m = O, 1 ,2  . . . .  ) (5.35) 

but in this case we do not have (5.34). 
If  we substitute the solution (5.29) with the condition (5.32) in equations 

(5.26) and (5.27) we obtain, with suitable constant M, 

E = - (co/c)A,  H = K x A (5.36) 

K .  A = 0 (5.37) 

with the same interpretation as in the continuous case. 

5.6. Electromagnetic Waves in a Finite Volume. In the last section nothing 
was said about the initial or boundary conditions of  the wave equation and 
about the stability of  the solution. If  we require that the vector potential be 
bounded in some finite volume of  space and that it satisfies the wave equation 
only in the grid points, (r&x, sAy, tAz) r, s, t = 0, 1, 2, 3 . . . . .  then the use of  
the finite Fourier series will solve the problem. 

The finite Fourier series (see for instance Milne, 1949; Forsythe and 
Wasov, 1960; Jordan, 1965) is based on the following properties of  the 
exponential or trigonometric functions: 

X -  1 [ 27rH 
exp | i - ~ - x ]  = O, n < N  (5.38) 

x = l  k ) 
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where x, n, and N are positive integers. Suppose a complete function f(x) is 
defined in the lattice points x = 0, 1 . . . . .  N. Then 

N - 1  {.27m 
f ( x ) =  n=o ~ anexp ~ t ~ - x ]  (5.39) 

The coefficients of this finite sum can be calculated multiplying both  sides by 
exp [-i(27rm/N)x] and doing the summation f rom x = 0 to x = N - 1, 

N - - 1  [ .27rm ~ N ~ I ( N ~ I _  an exp / '27r(m -- n )x ) )  (5.40) 
x~=O f(x)exp k - tN- -XJ  n=o \x=O k t -  N 

If m 4:- n, the sum in brackets will give zero f rom (5.38). If  m = n, the sum on 
the right side will give Na n . Therefore 

jVo-1  

1 x ~  0 [ .27rn ~ an= ~ = f (x )exp  ~ - t - ~ x ]  (5.41) 

Assume now for simplicity that the boundary conditions of the solution of  
the wave equation (5.28) are 

A ( 0 , y ,  z, t)  = A(a ,y ,  z, t) = 0 

a ( x ,  O,z, t) = a ( x , b , z ,  t) = 0 
(5.42) 

A(x,y,  O,t)= A(x ,y ,c , t )=O 

A(x,y ,  z, 0) = A(x ,y ,  c, T) = ao(x,y,z)  

with a = NAx,  b = NAy, c = NAz  
The first three conditions give immediately in the general solution (5.29) 

the characteristic values of  the wave vector: 

Kx = --a--'27rn x Ky-b27rny, Kz-c27rn z (5.43) 

where nx, ny, nz are arbitrary integer numbers. Therefore (5.29) can be written 
as an expansion of the partial waves 

A(x,y,  z, t) = £B(KxKyKz)e i(K .x-co0 (5.44) 

where K are given by (5.43). 
Now we impose the last condition of  (5.42) on this expansion, in order to 

calculate the coefficient B(Kx, Ky, Kz). We must remember that the function 
A(x, y, z ) i s  only defined in the grid points of  the parallelepiped, namely, 
(rAx, ray, tAz) (r, s, t = O, 1, 2 . . . .  , N). Then the sum has only a finite number 
of terms. Another way to look at this cutoff  in the series (5.44) is the following: 
If  we want the wave equation to be covariant we concluded Ku = M/Ax u. 
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Comparing with (5.43) we have 

21rnx_ M 2Zrny_ M 21rnz_ M 
(5.45) 

N A x  2xx' N A y  Ay '  N A z  A z  

But f fM = 2rrm, with m an integer, the solution is trivial. This corresponds to 
the value of nx = ny = nz = N, which are exactly the limit points of the series. 

Finally, using the method described before (Milne, 1949; Forsythe and 
Wasov, 1960; Jordan, 1965), we calculate the coefficients in (5.44) by the 
finite sums: 

N - - 1  N - - 1  N - 1  

B(Kx, Ky, Kz) = ~ • Z ao(rAx, sAy,  tAz )  
r = O  s=O t = O  

x exp [-- i (KxAxr  + KyAyS + KzAzt)]  (5.46) 

6. A Stronger Assumption: The Rational Character o f  
The Physical Magnitudes 

In this paper, we have only used the hypothesis that all the space-time 
variables should take an integral value, and, as a consequence, all the incre- 
ments of these variables can take also integral values. 

It is possible to make a stronger assumption, as I have proposed recently 
(Lorente, 1974). In this paper, the physical magnitudes such as the proper 
time, four-momentum, the electromagnetic field, and the four-potential are 
allowed to take any real or complex value. We can go further and impose on 
these magnitudes the condition of taking only rational values. This assumption 
does not follow logically from the discreteness of the space-time variables, 
but it is consistent with it. 

Now consider the expression for the proper time (3.18). It is easy to prove 
(Lorente, 1974, p. 235) that if we make 

AX = --2mr(m z +q2) + 2ms(mn - pq)  - 2m t (m q  + nq) 

A y = --2mr(ran + pq)  -- 2ms(m 2 + p2)  + 2mt(mq - -pn)  
(6.l) 

Az = 2mr(mr - nq) -- 2ms(mq +np)  -- 2mt(m 2 + n 2) 

A t  = m2(m 2 + n 2 + p2 + q2 + r 2 + s 2 + t 2) + (nt + ps + qr);  

with m, n, p, q, r, s, t arbitrary integral numbers, the proper time wilt be a 
rational number, given by 

A r  = (1/c)[m2(m 2 + n 2 + p2 _ r 2 _ s 2 _ t 2 ) _ ( n t  + ps + qr) 2] (6.2) 

provided c is given as a rational number. The expressions for the relativistic 
momentum and energy (4.3) wilt also be rational with the help of  (6.2) and 
the condition that m 0 be rational. 

All the arguments in Sections 3 and 4 can be carried out in similar way 
with this stronger assumption. In Section 5 we can also require that the 
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fields take only rational values. This restriction, in tile case of the solution of 
the wave equation, forces the vector potential and electromagnetic field to be 
proportional to one of the rational periodic functions. I have proved (Lorente, 
1974, p. 237) that only four nontriviat circular functions are rational, namely, 
those real components of the quaternionic functions 

~2(x)= ( - i )  x 

( - 1  +ni +p] +qk) x, 3mZ=n 2 +p2 +qZ 
~3(x) = 2m 

(6.3) 
$4(x) = (ni + Pj + qtc) mZ = n2 + p2 + q2 

~6(x) = 2m 

where (i,L k) is a quaternion basis, and x, rn, n, p, q can take only integral 
values. These functions must be used instead of the exponential functions 
(5.29). They also satisfy an equivalent condition (5.30) and (5.32). 

As in the case of the proper time, now the rationality condition constrains 
the possible direction of the wave vector;in fact, since the frequency v must 
be proportional to the norm of  the wave vector K, or what is equivalent, the 
period T should be proportional to the wavelength X, only those directions are 
allowed that are parallel to the vector r vdth components 

rl = m  2 _ n 2 _ p 2  +q2 

r2 = 2ran + 2pq (6.4) 

r 3 = -2rap + 2nq 
r = m  2 +rt2 +p2 +q2 

with m, n, p, q arbitrary integers (see Lorente, 1974, p. 244). 
Therefore we have 

T= ]r, 3,/c = ff (6.5) 

where ] is an arbitrary positive integer. To describe completely our rational 
periodic function we recall that the exponential form ~(t) = exp (2rrt/T) is 
periodic for t = T, 2T, etc. In the same fashion we must write from (6.3) 

~l(t) = (co2/Icol2) tt/T (l= 2, 3, 4, 6) (6.6) 

because for t = T, 2T, etc. $t(t) = 1. So our wave function will read 

~l(co2/I co t2) K'~ 

with 
l r rl l I 

K -  X r jr f K4 T /r 
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The finite Fourier series is based now on the property of the functions (6.3) 
l--1 

and similar arguments can be carried out to those of Section 5.6. 

7. C o n c l u d i n g  R e m a r k s  

One may argue that the Lorentz group of the model is too small. Certainly, 
the Lorentz transformations under which the discreteness of  the lattice is 
conserved become very reduced. Moreover, in the case of pure rotations only 
six matrices transform the whole lattice into itself (Lorente, 1974, p. 240). 
Itowever, there is no contradiction between these drastic restrictions and 
observations. The model is postulated at a subquantum level: There is no 
indication yet about the order of magnitude of the size of the elementary cell. 
Therefore, all the classical and quantum predictions remain unchanged, because 
at this level space-time is continuous and the Lorentz group needs no restriction. 
From the theoretical point of ~iew one can approximate continuous phenomena 
with a discrete structure of the world. For instance, in the case of  scattering 
of two particles, given the observed angle between the incident and the out- 
going particle, a particular transformation to the other rotated system can be 
approximated by rational cosines, as close as possible, with the use of rational 
rotations given in Lorente (1974, p. 229) and described by the complex vector 

Zk _m z2klz[2(p-k)  k = O, 1, 2 . . . . .  p 

where z = m + in, and m, n, p, k can take only integral values. The same argu- 
ments can be applied to the measured energy of a particle at rest and in other 
arbitrary inertial systems. One can approximate as much as possible both 
experimental observations by a discrete Lorentz transformation described by 
the hypercomplex number (see Lorente, 1974, p. 231) 

Uk = u 2 k l u [  2 q - k ) ,  k = O, 1 , 2  . . . . .  ] 

where u = m + en (e z = 1) andL k, m, n take only integral values. 
In my opinion the difficulty can be solved by epistemological considerations. 

It is well known that theoretical models must be finked to experimental results 
by rules of correspondence (see for instance Nagel, 1961): 

It is clear, however, that if a theory is to explain experimental laws, it is not sufficient 
that its terms be only implicitly defined. Unless something further is added to indicate 
how its implicitly defined terms are related to ideas occurring in experimental laws, a 
theory cannot be significantly affirmed or denied and in any way is scientifically useless 
(Nagel, 1961, p. 93). 

Starting from our model one could find some rule of correspondence by 
which there is a contradiction between the model and observations. Neverthe- 
less, the restriction of the Lorentz group in the model makes sense only in a 
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subquantum level. Even in the case of an authentic rule of correspondence, the 
precision of the model should be tempered with the statistical character of 
the observations: 

Tire general point that emerges from these examples is that, though theoretical concepts 
may be articulated with a high degree of precision, rules of correspondence coordinate 
them with experimental ideas that are far less definite. The haziness that surrounds such 
correspondence rules is inevitable, since experimental ideas do not have the sharp contours 
that theoretical notions possess (Nagel, 1961, p. 100). 

In my opinion, there is not yet any correspondence rule of the model. This 
model may be useless so far, but not in contradiction with experiments. 

In a similar model, recently proposed by K. Wilson (1974b), the discrete 
properties of the field variables are linked to the confinement of quarks. 
This suggests some possible rule of correspondence for our model. Investigations 
along this line are being carried out. 
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